资源类型

期刊论文 594

年份

2024 2

2023 123

2022 91

2021 56

2020 36

2019 40

2018 25

2017 27

2016 24

2015 25

2014 16

2013 12

2012 23

2011 24

2010 19

2009 11

2008 9

2007 10

2006 3

2003 1

展开 ︾

关键词

碳中和 11

二氧化碳 6

低碳经济 6

低碳发展 4

低碳 3

天然气 3

CCS 2

产业结构 2

光催化 2

化学吸收 2

化石能源 2

协同效应 2

固体氧化物燃料电池 2

土地利用变化 2

情景分析 2

碳基燃料 2

碳达峰 2

能源结构 2

N-糖组 1

展开 ︾

检索范围:

排序: 展示方式:

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

《能源前沿(英文)》 2021年 第15卷 第1期   页码 600-620 doi: 10.1007/s11708-021-0737-0

摘要: Converting solar energy into hydrogen (H ) by photocatalytic water splitting is a promising approach to simultaneously address the increasing energy demand and environmental issues. Half decade has passed since the discovery of photo-induced water splitting phenomenon on TiO photoanode, while the solar to H efficiency is still around 1%, far below the least industrial requirement. Therefore, developing efficient photocatalyst with a high energy conversion efficiency is still one of the main tasks to be overcome. Graphitic carbon nitride (g-C N ) is just such an emerging and potential semiconductor. Therefore, in this review, the state-of-the-art advances in g-C N based photocatalysts for overall water splitting were summarized in three sections according to the strategies used, and future challenges and new directions were discussed.

关键词: photocatalysis     overall water splitting     carbon nitride     hydrogen    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1125-1138 doi: 10.1007/s11705-021-2116-0

摘要: Crystalline materials with specific facet atomic arrangements and crystal facet structures exhibit unique functions according to their facet effects, quantum size effects and physical and chemical properties. In this study, a novel high-exposure (110) facet of bismuth oxyiodide (BiOI) was prepared (denoted as BiOI-110), and designed as nanosheets rich in oxygen vacancies by crystal facet design and regulation. Graphitic carbon nitride was designed as curved carbon nitride with dibromopyrazine, denoted as DCN, which contributed to a significant structural distortion in plane symmetry and improved the separation of charge carriers. Novel heterostructured BiOI-110/DCN nanosheets with a high-exposure (110) facet and abundant oxygen vacancies were successfully designed to enhance the photocatalytic degradation of organic pollutants. It was demonstrated that complete and tight contact between BiOI-110 and DCN was achieved by changing the size and crystal facet of BiOI. Oxytetracycline (OTC) and methyl blue dyes were used as targets for pollutant degradation, and 85.6% and 96.5% photocatalytic degradation efficiencies, respectively, were observed in the optimal proportion of 7% BiOI-110/DCN. The experimental results and electron spin resonance analysis showed that •O2 and h+ played a major role in the process of pollutant degradation. Additionally, high-resolution liquid chromatography-mass spectrography was used to identify the reaction intermediates of OTC, and the possible degradation pathway of this pollutant was proposed. Finally, the excellent reusability of BiOI-110/DCN nanomaterials was confirmed, providing a new approach for the removal of antibiotics that are difficult to biodegrade. Overall, crystal facet design has been proven to have broad prospects in improving the water environment.

关键词: high-exposure (110) facet     oxygen vacancy-rich     BiOI-110/DCN heterojunction     photocatalytic degradation     visible-light-response    

石墨相氮化碳负载杂多酸——水相中高效光氧化苯甲醇 Article

吴立夫, 安赛, 宋宇飞

《工程(英文)》 2021年 第7卷 第1期   页码 94-102 doi: 10.1016/j.eng.2020.07.025

摘要:

苯甲醛是一类重要化学品,在医药、化学合成和食品等领域具有广泛应用。然而,苯甲醛的生产过程通常涉及三氟甲苯或乙腈等危险溶剂的使用,并且,苯甲醛在水相反应体系中的转化率,尤其是选择性一直是难点。因此,开发一种环境友好的苯甲醛合成工艺具有极其重要的意义。在本文中,我们通过在磷酸功能化的石墨相氮化碳(g-C3N4)纳米片上负载磷钨酸成功制备了新型光催化剂(PW12-P-UCNS,其中,PW12为H3PW12O40·xH2O,P-UCNS为磷酸修饰的超薄石墨相氮化碳)。选取水相中苯甲醇光氧化制备苯甲醛的反应为模型反应,在室温条件下,对PW12-P-UCNS的催化性能进行了系统探究。所制备的PW12-P-UCNS光催化剂在2 h内的转化率为58.3%,选择性为99.5%,可重复使用5次以上,且活性未发生明显损失。同时,本文揭示了PW12-P-UCNS催化模型反应的Z型机理,系统分析了催化剂的光电流和光化学阻抗性能,并通过电子自旋共振测试和自由基捕获实验证明了超氧自由基和光生空穴是其主要反应活性物质。基于此,所设计的PW12-P-UCNS光催化剂对于在温和条件下通过水相光氧化反应生产苯甲醛具有广阔的应用前景。

关键词: 光催化     杂多酸     石墨相氮化碳     苯甲醛    

Sulfur and carbon co-doped g-CN microtubes with enhanced photocatalytic H production activity

《能源前沿(英文)》 doi: 10.1007/s11708-023-0899-z

摘要: Metal-free graphitic carbon nitride (g-C3N4) has captured significant attention as a low-cost and efficient hydrogen production photocatalyst through. Effectively regulating the microstructure and accelerating the separation of photogenerated carriers remain crucial strategies for promoting the photocatalytic performance of this material. Herein, a novel sulfur–carbon co-doped g-C3N4 (SCCN) hierarchical microtubules filled with abundant nanosheets inside by thermal polymerization is reported. Numerous nanosheets create abundant pores and cavities inside the SCCN microtubes, thereby increasing the specific surface area of g-C3N4 and providing sufficient reactant attachment sites. Besides, the hierarchical structure of SCCN microtubules strengthens the reflection and scattering of light, and the utilization of visible light is favorably affected. More importantly, co-doping S and C has greatly improved the photocatalytic performance of graphitic carbon nitride, optimized the band gap structure and enhanced the photogenerated carrier splitting. Consequently, the SCCN exhibits a remarkable photocatalytic H2 evolution rate of 4868 μmol/(g·h). This work demonstrates the potential of multi-nonmetal doped g-C3N4 as the ideal photocatalyst for H2 evolution.

关键词: carbon nitride     photocatalysis     hydrogen production    

Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1718-1727 doi: 10.1007/s11705-023-2319-7

摘要: In recent years, organic photocatalyst under visible-light absorption has shown significant potential for solving environmental problems. However, it is still a great challenge for constructing a highly active organic photocatalyst due to the low separation efficiency of photogenerated carriers. Herein, an effective and robust photocatalyst perylene-3,4,9,10-tetracarboxylic diamide/boron nitride quantum dots (PDI/BNQDs), consisting of self-assemble PDI with π–π stacking structure and BNQDs, has been constructed and researched under visible light irradiation. The PDI/BNQDs composite gradually increases organic pollutant photodegradation with the loading amount of BNQDs. With 10 mL of BNQDs solution added (PDI/BNQDs-10), the organic pollutant photodegradation performance reaches a maximum, about 6.16 times higher with methylene blue and 1.68 times higher with ciprofloxacin than that of pure PDI supramolecular. The enhancement is attributed to improved separation of photogenerated carriers from self-assembled PDI by BNQDs due to their preeminent ability to extract holes. This work is significant for the supplement of PDI supramolecular composite materials. We believe that this photocatalytic design is capable of expanding organic semiconductors’ potential for their applications in photocatalysis.

关键词: PDI     boron nitride     quantum dots     photocatalysis     hole transfer    

过硫酸盐诱导的缺陷氮化碳中三配位氮(N3C)空位增强光催化产过氧化氢 Article

缪蔚, 王奕杰, 刘莹, 秦贺贺, 褚成成, 毛舜

《工程(英文)》 2023年 第25卷 第6期   页码 214-221 doi: 10.1016/j.eng.2021.12.016

摘要:

近年来,原位光催化可持续过氧化氢合成技术受到越来越多的关注。其中石墨氮化碳(g-C3N4)被认为是最有前途的合成过氧化氢的光催化剂之一;并且,在g-C3N4中引入氮空位已被证明是提高其光催化活性的有效策略。然而,由于g-C3N4中不同类型的氮空位对光催化活性的影响方式不同,氮空位的光催化作用机制尚不清楚。在此,本文提出了一种简便的过硫酸钠共晶聚合方法,制备了具有丰富三配位氮空位(N3C)的g-C3N4。这种类型的氮空位在g-C3N4光催化产过氧化氢的研究中尚未得到重视。本研究的结果表明,在g-C3N4中引入N3C空位可以成功地拓宽光吸收范围,抑制光激发电荷的重组,增强O2的吸附和活化。富含N3C空位的g-C3N4的光催化过氧化氢产量是原始g-C3N4的4.5倍。本研究提出了在g-C3N4中引入N3C空位的新策略,为开发光催化产过氧化氢的活性催化剂提供了一种新方法。

关键词: 氮化碳     N3C空位     过氧化氢     光催化     过硫酸盐    

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics

Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 623-631 doi: 10.1007/s11709-020-0616-5

摘要: In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

关键词: hexagonal boron-nitride     mechanical properties     crack     notch     point defects     molecular dynamics    

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and -nitroanilines without

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 68-81 doi: 10.1007/s11705-022-2174-y

摘要: Benzimidazole derivatives have wide-spectrum biological activities and pharmacological effects, but remain challenging to be produced from biomass feedstocks. Here, we report a green hydrogen transfer strategy for the efficient one-pot production of benzimidazoles from a wide range of bio-alcohols and o-nitroanilines enabled by cobalt nitride species on hierarchically porous and recyclable nitrogen-doped carbon catalysts (Co/CNx-T, T denotes the pyrolysis temperature) without using an external hydrogen source and base additive. Among the tested catalysts, Co/CNx-700 exhibited superior catalytic performance, furnishing 2-substituted benzimidazoles in 65%–92% yields. Detailed mechanistic studies manifest that the coordination between Co2+ and N with appropriate electronic state on the porous nitrogen-doped carbon having structural defects, as well as the remarkable synergetic effect of Co/N dual sites contribute to the pronounced activity of Co/CNx-700, while too high pyrolysis temperature may cause the breakage of the catalyst Co–N bond to lower down its activity. Also, it is revealed that the initial dehydrogenation of bio-alcohol and the subsequent cyclodehydrogenation are closely correlated with the hydrogenation of nitro groups. The catalytic hydrogen transfer-coupling protocol opens a new avenue for the synthesis of N-heterocyclic compounds from biomass.

关键词: biomass conversion     furanic compounds     benzimidazoles     hydrogen transfer     bifunctional catalysis    

III族氮化物材料和设备的未来技术及用途

Shuji Nakamura

《工程(英文)》 2015年 第1卷 第2期   页码 161-161 doi: 10.15302/J-ENG-2015059

Engineering the electronic and geometric structure of VO/BN@TiO heterostructure for efficient aerobic oxidative desulfurization

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 276-287 doi: 10.1007/s11705-022-2242-3

摘要: Particle size governs the electronic and geometric structure of metal nanoparticles (NPs), shaping their catalytic performances in heterogeneous catalysis. However, precisely controlling the size of active metal NPs and thereafter their catalytic activities remain an affordable challenge in ultra-deep oxidative desulfurization (ODS) field. Herein, a series of highly-efficient VOx/boron nitride nanosheets (BNNS)@TiO2 heterostructures, therein, cetyltrimethylammonium bromide cationic surfactants serving as intercalation agent, BNNS and MXene as precursors, with various VOx NP sizes were designed and controllably constructed by a facile intercalation confinement strategy. The properties and structures of the prepared catalysts were systematically characterized by different technical methods, and their catalytic activities were investigated for aerobic ODS of dibenzothiophene (DBT). The results show that the size of VOx NPs and V5+/V4+ play decisive roles in the catalytic aerobic ODS of VOx/BNNS@TiO2 catalysts and that VOx/BNNS@TiO2-2 exhibits the highest ODS activity with 93.7% DBT conversion within 60 min under the reaction temperature of 130 °C and oxygen flow rate of 200 mL·min–1, which is due to its optimal VOx dispersion, excellent reducibility and abundant active species. Therefore, the finding here may contribute to the fundamental understanding of structure-activity in ultra-deep ODS and inspire the advancement of highly-efficient catalyst.

关键词: oxidative desulfurization     boron nitride     vanadium     MXene     intercalation confinement    

AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 262-267 doi: 10.15302/J-FASE-2023496

摘要:

● To achieve food security, Chinese agriculture– food system could not achieve C neutrality.

关键词: agriculture     carbon neutrality     carbon peak     food security     carbon mitigation strategies    

Research on low carbon management using a scientific classification method

Shanna QI, Meiting JU, Meng DUAN, Wei XING

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 524-530 doi: 10.1007/s11783-011-0333-3

摘要: This research is aimed at the rapid development of a low-carbon economy, in which we propose the classification and application of relevant management measures to affect the development of environmental management ideas and measures of the low-carbon economy, which we called as low carbon management measures. According to scientific analysis of the low-carbon economy, we can divide low-carbon management measures into three parts: measures for reduction of carbon sources, carbon flow planning, and increase of carbon sinks. Furthermore, we list the advantages that China can utilize to develop its own low-carbon management measures. In the end, necessary adjustments to environmental management measures in China can be made according to this scientific classification.

关键词: low-carbon economy     low carbon management     carbon source     carbon flow     carbon sink    

Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China

《能源前沿(英文)》 2023年 第17卷 第3期   页码 324-331 doi: 10.1007/s11708-023-0883-7

摘要: First, a brief introduction is made to the four basic judgments and understandings of the goals of “carbon peaking and carbon neutrality.” Then, an in-depth elaboration is provided on the eight major strategies for achieving the goals of “carbon peaking and carbon neutrality,” including conservation and efficiency priority, energy security, non-fossil energy substitution, re-electrification, resource recycling, carbon sequestration, digitalization and cooperation between countries. Next, eight major implementation paths for achieving the goals of “carbon peaking and carbon neutrality” are discussed in detail, including industrial restructuring; building a clean, low-carbon, safe and efficient energy system, and renewing the understanding of China’s energy resource endowment; accelerating the construction of a new-type power system with a gradually growing proportion of new energy, and realizing the “possible triangle” of high-quality energy system development; utilizing electrification and deep decarbonization technologies to promote the orderly peaking and gradual neutralization of carbon emissions in the industrial sector; promoting the low-carbon transition of transportation vehicles to achieve carbon peaking and carbon neutrality in the transportation sector; focusing on breaking through key green building technologies to achieve zero carbon emissions from building electricity and heat; providing a strong technical support for carbon removal to achieve carbon neutrality; accelerating the construction of the integrated planning and assessment mechanism for pollution and carbon reduction, establishing a sound strategy, planning, policy and action system, and optimizing the carbon trading system. Afterwards, it is particularly pointed out that the realization of the goals of “carbon peaking and carbon neutrality” cannot be separated from the support of sci-tech innovation. Finally, it is stressed that carbon neutrality is not the end, but an important milestone. If viewed from the perspective of future energy, the significance and historical status of the goals of “carbon peaking and carbon neutrality” will be more understandable.

关键词: carbon peaking and carbon neutrality     strategy     implementation path     important sci-tech innovation implementation path    

HIGHLIGHTS OF THE SPECIAL ISSUE “CARBON NEUTRALITY AND A LOW CARBON ECONOMY FOR AGRICULTURE”

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 153-154 doi: 10.15302/J-FASE-2023497

摘要: HIGHLIGHTS OF THE SPECIAL ISSUE “CARBON NEUTRALITY AND A LOW CARBON ECONOMY FOR AGRICULTURE”

关键词: CARBON     ISSUE     NEUTRALITY     HIGHLIGHTS     AGRICULTURE    

标题 作者 时间 类型 操作

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

期刊论文

石墨相氮化碳负载杂多酸——水相中高效光氧化苯甲醇

吴立夫, 安赛, 宋宇飞

期刊论文

Sulfur and carbon co-doped g-CN microtubes with enhanced photocatalytic H production activity

期刊论文

Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation

期刊论文

过硫酸盐诱导的缺陷氮化碳中三配位氮(N3C)空位增强光催化产过氧化氢

缪蔚, 王奕杰, 刘莹, 秦贺贺, 褚成成, 毛舜

期刊论文

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics

Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI

期刊论文

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and -nitroanilines without

期刊论文

III族氮化物材料和设备的未来技术及用途

Shuji Nakamura

期刊论文

Engineering the electronic and geometric structure of VO/BN@TiO heterostructure for efficient aerobic oxidative desulfurization

期刊论文

AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS

期刊论文

Research on low carbon management using a scientific classification method

Shanna QI, Meiting JU, Meng DUAN, Wei XING

期刊论文

Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China

期刊论文

HIGHLIGHTS OF THE SPECIAL ISSUE “CARBON NEUTRALITY AND A LOW CARBON ECONOMY FOR AGRICULTURE”

期刊论文